Synthesis of N-propionylated (S)-(-)-2-(pyrrolidin-2-yl)propan-2-ol and its use as a chiral auxiliary and selectivity marker in asymmetric aldol reactions

Erik Hedenström, ${ }^{*}{ }^{a}$ Fredrik Andersson ${ }^{a}$ and Mats Hjalmarsson ${ }^{b}$
${ }^{a}$ Department of Chemistry and Process Technology, Mid Sweden University, SE-851 70 Sundsvall, Sweden
${ }^{\text {b }}$ AstraZeneca $R \& D$ Södertälje, SE-151 85 Södertälje, Sweden

Received (in Lund, Sweden) 20th December 1999, Accepted 9th March 2000 Published on the Web 19th April 2000

Abstract

The N-propionylated pyrrolidine derivative and chiral auxiliary, (S)-(-)-2-(pyrrolidin-2-yl)propan-2-ol, was synthesised and used in stereoselective aldol reactions with benzaldehyde. Differences in stereoselectivity were investigated as a function of temperature, solvent, chelating agent and the amount of the chelating agent used by monitoring the ${ }^{1} \mathrm{H}$ NMR spectra of the aldol adducts that were obtained. Among the additives that were investigated, $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ induced higher anti-selectivity, while SnCl_{2} induced higher syn-selectivity respectively. TMSCl was found to induce high selectivity for one syn- and one anti-diastereomer. Varying the ligand sets on titanium additives was found to induce differences in selectivity, with (i-PrO) ${ }_{3} \mathrm{TiCl}$ exhibiting syn-selectivity and $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$ exhibiting anti-selectivity. Differences in reactivity and stereoselectivity were also found to depend upon the amount of Lewis acid that was added. Methods for removal of the auxiliary were also investigated. Acidic hydrolysis was used successfully to obtain the desired 3-hydroxy-2-methyl-3-phenylpropionic acids, but was found to give low yields and resulted in a large amount of epimerisation. Furthermore, the ethyl esters of these hydroxy acids are easy to separate into pure syn- and anti-diastereomers by LC.

Introduction

Numerous examples can be found in the literature involving the construction of new asymmetric $\mathrm{C}-\mathrm{C}$ bonds via aldol addition reactions. ${ }^{1}$ The asymmetric induction may be derived from pre-existing chirality in one of the reaction partners in the construction event (diastereoselective reactions) e.g., when a chiral auxiliary is used in stoichiometric quantities. ${ }^{2}$ Several papers have reported the successful application of proline-derived auxiliaries and ligands in diastereoselective aldol reactions. ${ }^{3}$ In this paper, however, we report the synthesis and utilisation of an N-propionylated chiral auxiliary, (S)-(-)-2-(pyrrolidin-2-yl)propan- $2-\mathrm{ol}^{4} \mathbf{1}$, in aldol reactions with benzaldehyde.

Results and discussion

The amino alcohol, (S)-(-)-2-(pyrrolidin-2-yl)propan-2-ol was synthesised in optically pure form according to the literature ${ }^{5}$ (see Scheme 1). Accordingly, (S)-(-)-proline was reacted with gaseous HCl in MeOH to produce a methyl ester hydrochloride in quantitative yield. Then, after treatment with $\mathrm{Et}_{3} \mathrm{~N}$ the free amine was N -benzyl protected in order to give a tertiary alcohol when reacted with 2.4 equivalents of MeMgI. Removal of the benzyl protection with hydrogen, catalysed by Pd / C, gave the aminoalcohol as white crystals in excellent yield. Crystallisation from hexane gave this very hygroscopic aminoalcohol in optically pure form, which after propionylation ${ }^{6}$ with propionic anhydride afforded the hydroxyamide 1 in excellent yield.
The general method (see Experimental section) for the aldol reaction involved addition of the hydroxyamide $\mathbf{1}$ to freshly prepared LDA in order to give the Z-lithium amide enolate. ${ }^{7}$ Benzaldehyde was then added to the enolate, or alternatively an additive (cf. Table 1) was introduced before adding the benzaldehyde. This reaction resulted in the four diastereomers syn$2 R$, syn- $2 S$, anti- $2 R$ and anti- $2 S$ (see Scheme 1).

The crude aldol adduct mixture was analysed by ${ }^{1} \mathrm{H}$ NMR spectroscopy (250 MHz) which made it possible to simultaneously measure both the conversion and the ratio of the diastereomers that were obtained (syn-2R, syn-2S, anti-2R and anti- $2 S$). The chemical shifts for the methyl groups located next to the tertiary alcohol appeared as singlets and varied significantly between the hydroxyamide and the four aldol adducts; in the hydroxyamide $\mathbf{1}$ they were found at 1.05 ppm , while in syn$2 R$, syn- $2 S$, anti- $2 R$ and anti- $2 S$ they showed up at $1.03,0.87$, 1.02 and 0.74 ppm , respectively (see Fig. 1). Therefore, this

Fig. 1 The methyl region of the $250 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum of N-propionylated (S)-(-)-2-(pyrrolidin-2-yl)propan-2-ol 1 and the four aldol diastereomers that were produced: $\operatorname{syn}-2 R$, $\operatorname{syn}-2 S$, anti-2R and anti- $2 S$.

| 1) Benzaldehyde |
| :--- | :--- |
| 2) $\mathrm{NH}_{4} \mathrm{Cl}$ (aq., sat.) |

$s y n-2 R$

$s y-2 S$

anti-2R

ani $-2 S$

Scheme 1 The synthesis of the N-propionylated (S)-(-)-2-(pyrrolidin-2-yl)propan-2-ol 1 and the procedure for the aldol reactions which resulted in one or more of the four possible diastereomers: syn-2R, syn-2S, anti-2R and anti-2S.
proline-derived auxiliary is not only useful as a chiral auxiliary, but also as a selectivity marker when studying aldol reactions.

The results of the stereoselective aldol reactions are summarised in Table 1. Comparing entries 1 and 2 shows that the modest syn: anti ratio increased from $54: 46$ to $66: 34$ when the solvent was changed from THF to $\mathrm{Et}_{2} \mathrm{O}$; the amount of anti-2S was also somewhat decreased relative to anti-2R. Lowering the temperature (entry 3) resulted in a lower syn:anti ratio and almost the same distribution among the four diastereomers with respect to entry 2.

In an effort to improve the stereoselectivity of the reaction, different additives were investigated that had been used in the literature in similar aldol reactions. When $(\mathrm{i}-\mathrm{PrO})_{3} \mathrm{TiCl}$ was added (entry 4), a moderate syn-selectivity was still obtained, but the amounts of $s y n-2 S$ and anti- $2 S$ increased, indicating a $2 S$ selectivity. However, when $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}\left(c f\right.$. Procter et al. ${ }^{8}$) was used as an additive (entry 9), an anti-selectivity resulted (e.g. $28: 72$), mostly because of an increase of anti-2R and a decrease of $s y n-2 S$, despite the decrease of anti- $2 S$. Procter et al. ${ }^{8}$ studied the aldol reaction of the non-chelating N-propionylpyrrolidine with benzaldehyde using $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}$ as an additive and reported a similar increase in anti-selectivity (syn:anti 2:98).

Use of SnCl_{2} as an additive (entry 5) resulted in the highest syn: anti ratio obtained in this study $(73: 27)$, but the conversion was rather low. The majority of the product consisted of the syn- $2 R$ adduct, corresponding to a hydroxy acid (that would be obtained after removal of the chiral auxiliary) with a theoretical ee value of 84%. Entries 6-8 include varying conditions
with SnCl_{2} as an additive and all of these cases exhibit increased conversion with modest and almost identical syn:anti ratios (e.g. $65: 35$), though some changes in the selectivity were registered when $\mathrm{Et}_{2} \mathrm{O}$ (entry 6) was used instead of THF (entry 5). The solvent change to $\mathrm{Et}_{2} \mathrm{O}$ resulted in an increased $2 S$ preference, with the ratio of the two anti-isomers anti-2R and anti-2S becoming inverted and the amount of syn- $2 S$ increasing at the expense of $s y n-2 R$. The opposite preference is obtained when SnCl_{2} is not added ($c f$. entry 1 and entry 2), indicating that in this case the $2 S$ products are disfavoured with $\mathrm{Et}_{2} \mathrm{O}$ as the solvent. In THF, the amount of added SnCl_{2} was found to influence the outcome of the reaction: increasing the amount of SnCl_{2} from 1.1 eq. (entry 7) to 2.1 eq. (entry 5) lowered the amounts of syn-2S and anti-2S that were produced, while increasing the amount of SnCl_{2} to 5 eq. caused an inversion in the anti- $2 S$: anti- $2 R$ ratio.

Using $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ as an additive (entries 10 and 11) resulted in anti-selectivity ($29: 71$ and $27: 73$ respectively), which is opposite to the report by Evans and McGee ${ }^{9}$ in which high synselectivity was obtained using N-propionylpyrrolidine as an auxiliary.

Use of TMSCl as an additive (entry 12) resulted in a modest anti-selectivity and a very high $2 S$ preference, giving high theoretical ee values for the hydroxy acids that would be obtained after removal of the chiral auxiliary (95% for $\operatorname{syn}-2 S$ and 98% for anti-2S respectively, see Table 1). The syn- $2 S$ product probably forms via the non-chelated chair transition state, ${ }^{2 a}$ while the anti- $2 S$ product most likely forms via either the non-
Table 1 Aldol reactions of the Z-enolate from N-propionylated (S)-(-)-2-(pyrrolidin-2-yl)propan-2-ol 1 with benzaldehyde

| | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Entry | | | |
| | Solvent | Additive (eq.) | |

chelated boat or the twist-boat transition state ${ }^{2 a}$ respectively. To fully understand and interpret the outcome of these asymmetric aldol reactions a proline derivative without the possibility of chelating to the additives is now in production in our laboratory. However, the conversion was rather low (entry 12) and did not increase with longer reaction times. Dichlorodimethylsilane was utilised instead of TMSCl in an effort to produce a bicyclic dimethylsiloxane similar to that which was obtained when primary (S)-prolinol propionamide was used. ${ }^{3 b}$ However, no such product was formed in this case. From the various mixtures of diastereomers (see Table 1), each of the four aldol products syn- $2 R$, syn-2S, anti-2R and anti-2S can be isolated in stereoisomerically pure form by repeated LC (see Experimental section).

In order to obtain either 3-hydroxy-2-methyl-3-phenylpropionic acids or the corresponding diols, four different methods of hydrolysis were tested. Acidic hydrolysis ${ }^{4}$ gave somewhat low yields $52-55 \%$ of the hydroxy acids and hydrolysis of the stereoisomerically pure aldol product $\operatorname{syn}-2 R$ resulted in epimerisation; this was evident from the change in the syn:anti ratio to $58: 42$ following hydrolysis. The epimerisation probably occurs at the α-carbon, since Katsuki and Yamaguchi ${ }^{3 c}$ reported no epimerisation at the β-carbon when hydrolysing an aldol product without an α-methyl substituent under similar conditions. Basic hydrolysis using 2.5 M KOH $\left(10 \% \mathrm{H}_{2} \mathrm{O}\right.$ in MeOH$)$ resulted in a retro aldol process which gave the starting materials, the hydroxyamide $\mathbf{1}$ and benzaldehyde instead of the desired acids. The reductive hydrolysis, ${ }^{10}$ using a borane-lithium pyrrolidine complex did not undergo appreciable conversion to the desired diols and basic hydrolysis ${ }^{11}$ using $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%)$ and LiOH in a THF- $\mathrm{H}_{2} \mathrm{O}$ mixture also showed no conversion to the acids. The chiral auxiliary (S)-(-)-2-(pyrrolidin-2-yl)propan-2-ol was recoverable as the hydroxyamide $\mathbf{1}$ in optically pure form from the acidic hydrolysis mixture in good yield according to the literature. ${ }^{4}$

The aldol product from entry 12 (syn:anti ratio 38:62) contained $>97 \%$ of $\operatorname{syn}-2 S$ - and anti- $2 S$-aldol products which after acidic hydrolysis gave a syn:anti mixture (42:58) of 3-hydroxy-2-methyl-3-phenylpropionic acids. The acids in the mixture were then converted to their ethyl esters and then separated by LC into pure syn- and anti-forms. ${ }^{12}$ The optical rotation for the ethyl ester obtained from syn- $2 S$ corresponded well to ethyl ($2 S, 3 S$)-3-hydroxy-2-methyl-3-phenylpropionate. ${ }^{12}$ Based on the sign of optical rotation for the ester obtained from anti-2S, this ester corresponds to ethyl ($2 S, 3 R$)-3-hydroxy-2-methyl-3phenylpropionate although the difference from the literature value for the enantiomer ${ }^{12}$ is significant.

This work represents the first time that this proline-derived chiral auxiliary has been used in asymmetric aldol reactions and it was found to be useful as a selectivity marker when studying such reactions. We are currently investigating the scope and further applications of this chiral auxiliary and its derivatives in asymmetric syntheses.

Experimental

Unless otherwise stated starting materials and solvents were used as received from commercial suppliers. Dry THF (benzophenone and potassium), $\mathrm{Et}_{2} \mathrm{O}\left(\mathrm{LiAlH}_{4}\right)$, diisopropylamine $\left(\mathrm{CaH}_{2}\right)$, benzaldehyde and $\mathrm{TMSCl}\left(\mathrm{CaH}_{2}\right)$ were distilled from the indicated drying agents and either used immediately or stored under argon. SnCl_{2} was oven dried before use. NMR spectra were recorded on a JEOL JNM-EX 270 FT-NMR (270 $\mathrm{MHz}{ }^{1} \mathrm{H}$) or a Bruker DMX $250\left(250 \mathrm{MHz}{ }^{1} \mathrm{H}\right.$ and 62.9 MHz ${ }^{13} \mathrm{C}$) instrument, using CDCl_{3} as the solvent, $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{4}$ as the internal standard; all shifts are reported in ppm. GC analyses were carried out using a Varian 3300 or a Varian STAR 3400 CX with a $30 \mathrm{~m} \times 0.25 \mathrm{~mm}$ id capillary column coated with HP-5, $d_{\mathrm{f}}=0.25 \mu \mathrm{~m}$, carrier gas: He (12 psi), split ratio: 1:20 or a $30 \mathrm{~m} \times 0.25 \mathrm{~mm}$ id capillary column coated with VA- $1, d_{\mathrm{f}}=$
$0.25 \mu \mathrm{~m}$, carrier gas: He (12 psi), split ratio: 1:20 respectively. GC-MS were recorded using a Varian SATURN 2000 GC/MS with a $30 \mathrm{~m} \times 0.25 \mathrm{~mm}$ id capillary column coated with DB- 5 , $d_{\mathrm{f}}=0.25 \mu \mathrm{~m}$, carrier gas: He (10 psi), split ratio: 1:20. Optical rotations were carried out on a Perkin-Elmer 241 Polarimeter and are reported in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. Merck Silica gel 60 ($0.040-0.063 \mathrm{~mm}, 230-400$ mesh ASTM) was used in LC separations. TLC (thin layer chromatography) was performed on silica gel plates (Merck 60, pre-coated aluminium foil) eluted with EtOAc (100%), and developed in UV-light and sprayed with vanillin in sulfuric acid or phosphomolybdic acid in aqueous sulfuric acid followed by heating with a heat gun. Boiling points are not corrected and the bulb-to-bulb distillations were performed in a Büchi GKR-51 apparatus. The HRMS measurements were taken on a VG-70E mass spectrometer.

Methyl (S)-(N-benzylpyrrolidin-2-yl)methanoate

$\mathrm{HCl}(\mathrm{g})$ was bubbled through a solution of $(S)-(-)$-proline (103 $\mathrm{g}, 0.90 \mathrm{~mol})$ in methanol (700 ml , p.a.) at $-5^{\circ} \mathrm{C}$ until no more $\mathrm{HCl}(\mathrm{g})$ was taken up (3.5 h). The solvent was removed by rotary evaporation, the residue treated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{ml})$ and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ subsequently removed in vacuo. This process was repeated 3 times to remove the water formed. The residue was then dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{ml})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give the title compound ($149 \mathrm{~g}, 0.90 \mathrm{~mol}$). The hydrochloride was checked by ${ }^{1} \mathrm{H}$ NMR spectroscopy and used in the next step without further purification.

The (S)-proline methyl ester hydrochloride ($130 \mathrm{~g}, 0.785 \mathrm{~mol}$) was dissolved in methanol (180 ml , p.a.) and cooled to $0{ }^{\circ} \mathrm{C}$ when dry $\mathrm{Et}_{3} \mathrm{~N}(120 \mathrm{ml}, 0.858 \mathrm{~mol})$ was added drop by drop $(0.7 \mathrm{~h}) . \mathrm{Et}_{2} \mathrm{O}(1650 \mathrm{ml}$, p.a.) was added and after 0.5 h the triethylammonium chloride formed was filtered off. Removal of the solvent gave the free base $(74.7 \mathrm{~g}, 0.579 \mathrm{~mol})$. This was immediately dissolved in dry toluene (150 ml) and added to a suspension of $\mathrm{NaHCO}_{3}(53.4 \mathrm{~g}, 0.636 \mathrm{~mol})$ and a few crystals of KI in dry toluene (750 ml). Benzyl bromide ($69.4 \mathrm{ml}, 0.578$ mol) was then added. The mixture was heated to reflux until 10 ml of water had been collected (2 h). After cooling, the solvent was evaporated off and the residue distilled $\left(102{ }^{\circ} \mathrm{C} / 0.10\right.$ mmHg) to yield the title compound ($118 \mathrm{~g}, 0.538$). [a] $]_{\mathrm{D}}^{20}-73.6$ (c 1.2, methanol). ${ }^{1} \mathrm{H}$ NMR (250 MHz): $\delta 1.70-2.21(4 \mathrm{H}, \mathrm{m}$), 2.34-2.44 ($1 \mathrm{H}, \mathrm{m}$), 3.01-3.09 ($1 \mathrm{H}, \mathrm{m}$), 3.19-3.27 ($1 \mathrm{H}, \mathrm{m}$), 3.57 $(1 \mathrm{H}, \mathrm{d}, J=12.7 \mathrm{~Hz}), 3.64(3 \mathrm{H}, \mathrm{s}), 3.88(1 \mathrm{H}, \mathrm{d}, J=12.7 \mathrm{~Hz})$, 7.19-7.35 (5H, m) ppm. ${ }^{13} \mathrm{C}$ NMR (62.9 MHz): $\delta 22.92$, $29.33,51.71,53.26,58.75,65.29,127.07,128.14$ (2 C), 129.22 (2 C), $138.20,174.56 \mathrm{ppm}$. MS (EI) m / z (relative intensity): $220\left(27 \%, \mathrm{MH}^{+}\right), 219\left(7, \mathrm{M}^{+}\right), 218\left(29, \mathrm{M}^{+}-\mathrm{H}\right), 160(100)$, 142 (3), 91 (3).

(S)-2-(N-Benzylpyrrolidin-2-yl)propan-2-ol

To the methyl Grignard reagent prepared from magnesium chips ($30.2 \mathrm{~g}, 1.147 \mathrm{~mol}$) the methyl ester from above (104 g , $0.478 \mathrm{~mol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(450 \mathrm{ml})$ was added dropwise at $0-7^{\circ} \mathrm{C}$. The mixture was heated to reflux (2 h) and then stirred at ambient temperature overnight before quenching with aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}(1000 \mathrm{ml})$. The organic phase was separated and the aqueous phase extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 300 \mathrm{ml})$. The pooled organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent evaporated off to give the alcohol after distillation $\left(97-99.5^{\circ} \mathrm{C} /\right.$ $0.10 \mathrm{mmHg})$ as a light brown oil ($79.7 \mathrm{~g}, 0.371 \mathrm{~mol}$). [[]$_{\mathrm{D}}^{20}-49.3$ (c 0.9, methanol). ${ }^{1} \mathrm{H}$ NMR (250 MHz): $\delta 1.17$ ($3 \mathrm{H}, \mathrm{s}$), 1.26 $(3 \mathrm{H}, \mathrm{s}), 1.64-1.96(4 \mathrm{H}, \mathrm{m}), 2.37-2.47(1 \mathrm{H}, \mathrm{m}), 2.66(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, disappeared on shaking with $\left.\mathrm{D}_{2} \mathrm{O}\right), 2.73-2.78(1 \mathrm{H}, \mathrm{m}), 2.85-$ $2.94(1 \mathrm{H}, \mathrm{m}), 3.59(1 \mathrm{H}, \mathrm{d}, J=13.9 \mathrm{~Hz}), 4.14(1 \mathrm{H}, \mathrm{d}, J=13.9$ Hz), 7.20-7.39 (5H, m) ppm. ${ }^{13} \mathrm{C}$ NMR (62.9 MHz): $\delta 25.16$, $25.20,27.76,28.66,55.36,63.14,72.69,72.92,126.80,128.05$ (2 C), 128.30 (2 C), 140.51. MS (EI) m / z (relative intensity): 220 $\left(31 \%, \mathrm{MH}^{+}\right), 219\left(8, \mathrm{M}^{+}\right), 218$ (22, $\left.\mathrm{M}^{+}-\mathrm{H}\right), 202$ (20), 160 (100), 142 (1), 91 (3).
(S)-(-)-2-(Pyrrolidin-2-yl)propan-2-ol
(S)-(-)-2-(N-Benzylpyrrolidin-2-yl)propan-2-ol ($41.2 \mathrm{~g}, 0.188$ $\mathrm{mol})$ and $\mathrm{Pd} / \mathrm{C}(2.9 \mathrm{~g}, 10 \%)$ were stirred in methanol (200 ml) for three days under 1 atm of hydrogen. The catalyst was filtered off and the solvent removed by rotary evaporation to give a golden oil that crystallised upon standing ($23.3 \mathrm{~g}, 0.180 \mathrm{~mol}$, 96%). The crude product was crystallised twice from hexane and dried over phosphoric pentaoxide in a vacuum desiccator to yield the optically pure aminoalcohol ($6.52 \mathrm{~g}, 0.052 \mathrm{~mol}$). $\mathrm{Mp}=37-39^{\circ} \mathrm{C}$, lit. ${ }^{4} \mathrm{mp}=37-38^{\circ} \mathrm{C},[a]_{\mathrm{D}}^{25}-35.8$ (c $\left.1.1, \mathrm{MeOH}\right)$, lit. ${ }^{4}[a]_{\mathrm{D}}^{20}-35.8(c 1.1, \mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR $(270 \mathrm{MHz}): \delta 1.13(3 \mathrm{H}$, s), $1.17(3 \mathrm{H}, \mathrm{s}), 1.53-1.79(4 \mathrm{H}, \mathrm{m}), 2.69(2 \mathrm{H}$, two overlapping br s , disappeared on shaking with $\left.\mathrm{D}_{2} \mathrm{O}\right), 2.87-3.05(3 \mathrm{H}, \mathrm{m}) \mathrm{ppm}$.

(S)-(-)-2-(N-Propionylpyrrolidin-2-yl)propan-2-ol, 1

To the aminoalcohol ($2.72 \mathrm{~g}, 21.1 \mathrm{mmol}$, from above), propionic anhydride ($3.01 \mathrm{~g}, 23.2 \mathrm{mmol}$) was added drop by drop $(0.3 \mathrm{~h})$ with stirring under an argon atmosphere. The mixture was heated at $70^{\circ} \mathrm{C}(0.5 \mathrm{~h})$, then cooled and basified to pH 10 with $\mathrm{NaOH}(\mathrm{aq} 30 \$.$%) and stirred for an additional 1.5 \mathrm{~h}$. The organic phase was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 20 \mathrm{ml})$. The combined organic phases were washed with 10% aq. $\mathrm{HCl}(20 \mathrm{ml})$, brine (40 ml) and finally dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the solvent and bulb-to-bulb distillation ($162-163^{\circ} \mathrm{C} / 0.5 \mathrm{mbar}$) gave the optically pure hydroxyamide $1(3.78 \mathrm{~g}, 20.4 \mathrm{mmol})$. $[a]_{\mathrm{D}}^{25}-96.5$ (c 5.4 , MeOH), lit. ${ }^{4}[a]_{\mathrm{D}}^{20}-93.2$ ($c 5.4, \mathrm{MeOH}$). ${ }^{1} \mathrm{H}$ NMR (270 MHz): $\delta 1.05(3 \mathrm{H}, \mathrm{s}), 1.17(3 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 1.19(3 \mathrm{H}, \mathrm{s}), 1.57-2.15$ $(4 \mathrm{H}, \mathrm{m}), 2.39(2 \mathrm{H}, \mathrm{q}, J=7.4 \mathrm{~Hz}), 3.32-3.43(1 \mathrm{H}, \mathrm{m}), 3.62-3.70$ $(1 \mathrm{H}, \mathrm{m}), 4.13(1 \mathrm{H}$, apparent $\mathrm{t}, J=7.6 \mathrm{~Hz}), 5.90(1 \mathrm{H}, \mathrm{br}$ s, disappeared on shaking with $\left.\mathrm{D}_{2} \mathrm{O}\right) .{ }^{13} \mathrm{C}$ NMR (62.9 MHz): $\delta 9.14$, 23.18, 24.47, 27.80, 28.64, 28.71, 48.81, 68.13, 73.48, 175.75 ppm. MS (EI) m / z (relative intensity): $186\left(25 \%, \mathrm{MH}^{+}\right), 168$ (5), 127 (67), 98 (31), 70 (100), 57 (9).

Aldol reactions: general procedure

To a cooled solution $\left(0^{\circ} \mathrm{C}\right)$ of diisopropylamine $(0.510 \mathrm{~g}$, 5.0 mmol) in either THF or $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{ml})$ under an argon atmosphere in a two-necked flask (50 ml) was added 1.6 M n-butyllithium in hexane ($2.75 \mathrm{ml}, 4.4 \mathrm{mmol}$). The mixture was stirred at $0^{\circ} \mathrm{C}(1 \mathrm{~h})$, and to this solution of LDA was added dropwise a solution of hydroxyamide $\mathbf{1}(0.371 \mathrm{~g}, 2.0 \mathrm{mmol})$ dissolved in THF or $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{ml})$. After stirring at $0^{\circ} \mathrm{C}(1 \mathrm{~h})$ the solution was cooled to $-78^{\circ} \mathrm{C}$ followed by addition of benzaldehyde $(0.255 \mathrm{~g}, 2.4 \mathrm{mmol})$ in THF or $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{ml})$. The mixture was then stirred at $-78^{\circ} \mathrm{C}(2 \mathrm{~h})$ and slowly warmed to room temperature (2 h).
Alternatively. before the addition of benzaldehyde a Lewis acid was added (1.1-5.0 eq.) neat $\left(\mathrm{Cp}_{2} \mathrm{TiCl}_{2} \text {, (i-PrO) }\right)_{3} \mathrm{TiCl}$ and TMSCl) or dissolved in either THF or $\mathrm{Et}_{2} \mathrm{O}(10-17 \mathrm{ml})$. The reaction mixture was stirred at low temperature ($0.2-0.5 \mathrm{~h}$) followed by warming to $0^{\circ} \mathrm{C}$ or to room temperature ($0.5-$ 2.0 h). The mixture was again cooled to $-78^{\circ} \mathrm{C}$ for $0-1 \mathrm{~h}$, followed by addition of benzaldehyde $(0.255 \mathrm{~g}, 2.4 \mathrm{mmol}, 1.2$ eq.) in THF or $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{ml})$. For exact equivalents of Lewis acid, reaction temperatures and times etc., see Table 1. The reaction mixture was quenched by dropwise addition of aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}(20-30 \mathrm{ml})$. Precipitated materials were filtered off and the organic phase was separated. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 25 \mathrm{ml})$ and the combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$. (In the case of remaining precipitated material the combined organic phases were washed with brine and water before drying.) Concentration by evaporation afforded the crude aldol products.
For entry 12 (cf. Table 1) the silyl ether was formed and had to be removed in order to afford the desired aldol product. The crude product was dissolved in $\mathrm{MeOH}(30 \mathrm{ml})$ and TsOH (10 mg) was added. After stirring overnight at room temperature,

MeOH was evaporated off and the residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 ml) and washed with $\mathrm{Na}_{2} \mathrm{CO}_{3}$ (aq. $10 \%, 10 \mathrm{ml}$). The organic phase was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$. The combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporation afforded the crude aldol product.

The crude product was adsorbed on SiO_{2} (approx. 5 times the weight of the crude product) and applied to the top of a column (id 12.5 mm) with SiO_{2} (approx. 30 times the weight of the crude product in SiO_{2}). Eluting with EtOAc in cyclohexane, 0, 1.25, 2.5, 5, 10, 20, 40, 80, 100\% and MeOH in EtOAc, 1.25, $2.5,5,10,20 \%$, gave after one repetition of this procedure pure syn- $2 R$ as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy.
Spectroscopic data for $\boldsymbol{s y n} \boldsymbol{- 2 R}$. ${ }^{1} \mathrm{H}$ NMR (250 MHz): $\delta 1.03$ $(3 \mathrm{H}, \mathrm{s}), 1.17(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 1.19(3 \mathrm{H}, \mathrm{s}), 1.50-1.69(2 \mathrm{H}$, m), $1.80-2.13(2 \mathrm{H}, \mathrm{m}), 2.86(1 \mathrm{H}, \mathrm{dq}, J=7.0,3.6 \mathrm{~Hz}), 3.22-3.35$ $(1 \mathrm{H}, \mathrm{m}), 3.55-3.65(1 \mathrm{H}, \mathrm{m}), 4.14(1 \mathrm{H}$, apparent $\mathrm{t}, J=7.3 \mathrm{~Hz})$, $4.24(2 \mathrm{H}$, two overlapping br s), $5.09(1 \mathrm{H}, \mathrm{d}, J=3.6 \mathrm{~Hz}), 7.21-$ $7.40(5 \mathrm{H}, \mathrm{m}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (62.9 MHz): $\delta 10.79,23.30,24.40$, 27.76, 28.56, 44.94, 49.07, 68.15, 73.16, 73.54, 125.97, 127.31, 128.18, 141.63, 178.44 ppm . MS (EI) m / z (relative intensity): $292\left(68 \%, \mathrm{MH}^{+}\right), 274$ (23), 256 (3), 233 (8), 218 (5), 185 (4), 167 (3), 126 (100), 107 (8), 70 (36). HRMS (EI, 28 eV): $\left(\mathrm{MH}^{+}\right)$ 292.1904 and ($\mathrm{MH}^{+}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}$) 233.1400. $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NO}_{3}$ and $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2}$ require 292.1913 and 233.1416 respectively.

Spectroscopic data for syn-2S. ${ }^{1} \mathrm{H}$ NMR (250 MHz): $\delta 0.87$ $(3 \mathrm{H}, \mathrm{s}), 1.13(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 1.16(3 \mathrm{H}, \mathrm{s}), 1.54-1.78(2 \mathrm{H}, \mathrm{m})$, $1.84-2.15(2 \mathrm{H}, \mathrm{m}), 2.84(1 \mathrm{H}, \mathrm{dq}, J=7.0,4.1 \mathrm{~Hz}), 3.25-3.37(1 \mathrm{H}$, m), 3.62-3.71 ($1 \mathrm{H}, \mathrm{m}$), $4.09(1 \mathrm{H}$, apparent $\mathrm{t}, J=7.6 \mathrm{~Hz}), 4.71$ (2 H , two overlapping br s), $5.04(1 \mathrm{H}, \mathrm{d}, J=4.1 \mathrm{~Hz}), 7.21-7.40$ $(5 \mathrm{H}, \mathrm{m}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (62.9 MHz): $\delta 10.34,23.02,24.40$, 27.77, 28.67, 44.91, 48.94, 68.15, 73.32, 73.99, 126.25, 127.40 , 128.23, 141.64, 178.09 ppm . MS (EI) m / z (relative intensity): $292\left(16 \%, \mathrm{MH}^{+}\right), 274$ (5), 233 (31), 218 (27), 185 (14), 167 (3), 126 (100), 107 (13), 70 (75). HRMS (EI, 28 eV): $\left(\mathrm{MH}^{+}-\right.$ $\left.\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}\right) 233.1576$ and $\left(\mathrm{MH}^{+}-\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}\right)$ 126.0961. $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2}$ and $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{NO}$ require 233.1416 and 126.0919 respectively.

Spectroscopic data for anti-2R. ${ }^{1} \mathrm{H}$ NMR (250 MHz): $\delta 1.02$ $(3 \mathrm{H}, \mathrm{s}), 1.18(3 \mathrm{H}, \mathrm{s}), 1.20(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 1.35-1.64(2 \mathrm{H}$, m), 1.72-2.08 ($2 \mathrm{H}, \mathrm{m}$), $3.01(1 \mathrm{H}, \mathrm{dq}, J=7.0,6.4 \mathrm{~Hz}), 3.17-3.28$ $(1 \mathrm{H}, \mathrm{m}), 3.49-3.58(1 \mathrm{H}, \mathrm{m}), 4.10(1 \mathrm{H}$, apparent $\mathrm{t}, J=7.7 \mathrm{~Hz})$, $4.29(2 \mathrm{H}$, two overlapping br s), $4.79(1 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz})$, $7.22-7.43(5 \mathrm{H}, \mathrm{m}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR (62.9 MHz): $\delta 15.52,23.22$, $24.21,27.71,28.55,45.45,49.07,67.96,73.44,76.43,126.15$, 127.72, $128.39,142.55,177.55 \mathrm{ppm}$. MS (EI) m / z (relative intensity): 292 ($76 \%, \mathrm{MH}^{+}$), 274 (24), 256 (5), 233 (11), 218 (4), 185 (4), 167 (4), 126 (100), 107 (11), 70 (57). HRMS (EI, 28 eV): $\left(\mathrm{MH}^{+}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}\right) 233.1594$ and $\left(\mathrm{MH}^{+}-\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}\right)$ 126.0953. $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2}$ and $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{NO}$ require 233.1416 and 126.0919 respectively.

Spectroscopic data for anti-2S. ${ }^{1} \mathrm{H}$ NMR (250 MHz): $\delta 0.74$ $(3 \mathrm{H}, \mathrm{s}), 1.12(3 \mathrm{H}, \mathrm{s}), 1.20(3 \mathrm{H}, \mathrm{d}, J=7.0 \mathrm{~Hz}), 1.53-1.77(2 \mathrm{H}$, m), 1.85-2.10 ($2 \mathrm{H}, \mathrm{m}$), $2.99(1 \mathrm{H}, \mathrm{dq}, J=7.0,5.9 \mathrm{~Hz}), 3.22-3.40$ $(1 \mathrm{H}, \mathrm{m}), 3.62-3.71(1 \mathrm{H}, \mathrm{m}), 4.07(1 \mathrm{H}$, apparent $\mathrm{t}, J=7.5 \mathrm{~Hz})$, $4.71(2 \mathrm{H}$, two overlapping br s), $4.80(1 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz})$, 7.22-7.43 ($5 \mathrm{H}, \mathrm{m}$) ppm. ${ }^{13} \mathrm{C}$ NMR (62.9 MHz): $\delta 14.61,22.86$, 24.29, 27.71, 28.67, 45.35, 49.05, 68.28, 73.52, 76.56, 126.01, 127.17, 127.47, 128.36, 142.70, 177.28 ppm . MS (EI) m / z (relative intensity): $292\left(45 \%, \mathrm{MH}^{+}\right), 274$ (12), 233 (18), 218 (5), 185 (5), 167 (4), 126 (100), 107 (14), 70 (61). HRMS (EI, 28 eV): $\left(\mathrm{MH}^{+}-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}\right) 233.1526$ and $\left(\mathrm{MH}^{+}-\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}\right)$ 126.0954. $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2}$ and $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{NO}$ require 233.1416 and 126.0919 respectively.

($2 S, 3 S$) and ($2 S, 3 R$)-3-Hydroxy-2-methyl-3-phenylpropionic acids. Hydrolysis general method

A diastereomeric mixture of aldol products $(0.538 \mathrm{~g}, 1.85$ mmol, syn:anti $=65: 35$, determined by ${ }^{1} \mathrm{H}$ NMR spectro-
scopy) was dissolved in 1,4-dioxane (14 ml) and 3 M aq. HCl $(14 \mathrm{ml})$. The solution was stirred at $90-95^{\circ} \mathrm{C}(43 \mathrm{~h})$. After cooling to room temperature, the hydrolysis mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 25 \mathrm{ml})$. The combined organic phases were treated with aqueous saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}(50 \mathrm{ml})$. Acidification of the aqueous phase with 6 M HCl to $\mathrm{pH} 1-2$, extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 25 \mathrm{ml})$ and drying $\left(\mathrm{MgSO}_{4}\right)$ gave after evaporation of the solvent a mixture of acids ($0.252 \mathrm{~g}, 1.40 \mathrm{mmol}$). Purification by bulb-to-bulb distillation ($205^{\circ} \mathrm{C} / 0.3 \mathrm{mbar}$) gave 0.195 $\mathrm{g}(1.08 \mathrm{mmol})$ of the acids with $>94.7 \%$ purity by GC. The syn:anti ratio for the mixture was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy to be 48:52. [a] $]_{\mathrm{D}}^{25}+4.4$ (c $0.90, \mathrm{CH}_{2} \mathrm{Cl}_{2}$), lit. ${ }^{13}$ for ($2 S, 3 S$)-3-hydroxy-2-methyl-3-phenylpropionic acid $[a]_{\mathrm{D}}-29.3$ (c $0.80, \mathrm{CHCl}_{3}$) and lit. ${ }^{13}$ for ($2 S, 3 R$)-3-hydroxy-2-methyl-3phenylpropionic acid $[a]_{\mathrm{D}}+17.8\left(c 2.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR (250 $\mathrm{MHz}): \delta 1.04(3 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}$, anti isomers), $1.16(3 \mathrm{H}, \mathrm{d}, J=$ 7.3 Hz , syn isomers), $2.81-2.92(1 \mathrm{H}, \mathrm{m}), 4.77(1 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz}$, anti isomers), $5.18(1 \mathrm{H}, \mathrm{d}, J=4.0 \mathrm{~Hz}, \operatorname{syn}$ isomers), $7.26-7.42$ (5H, m). MS (EI) m/z (relative intensity): $180\left(3 \%, \mathrm{M}^{+}\right), 162$ (5), 133 (7), 117 (38), 107 (73), 91 (25), 77 (100), 51 (34), 45 (15).

Hydrolysis of the pure aldol product syn- $2 R(0.155 \mathrm{~g}, 0.53$ mmol, 100% purity by ${ }^{1} \mathrm{H}$ NMR spectroscopy) yielded a syn: anti mixture ($58: 42$) of acids $(0.050 \mathrm{~g}, 0.28 \mathrm{mmol})$ as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. $[a]_{\mathrm{D}}^{25}-2.6\left(c 0.90, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, lit. ${ }^{13}$ for ($2 R, 3 R$)-2-methyl-3-hydroxy-3-phenylpropionic acid $[a]_{\mathrm{D}}+28.5\left(c 1.12, \mathrm{CHCl}_{3}\right)$, and lit. ${ }^{13}$ for $(2 R, 3 S)$-2-methyl-3-hydroxy-3-phenylpropionic acid $[a]_{\mathrm{D}}-17.5\left(c 2.3, \mathrm{CHCl}_{3}\right)$.

Ethyl (2S,3S)- and (2S,3R)-3-hydroxy-2-methyl-3-phenylpropionate

Hydrolysis of a mixture of aldol products ($76 \mathrm{mg}, 0.26 \mathrm{mmol}$, syn- $2 S$:anti- $2 S=32: 68,100 \%$ pure by ${ }^{1} \mathrm{H}$ NMR spectroscopy) by the same procedure as above yielded a yellow oil (46 mg). The crude product of the acids was dissolved in EtOH (99.5%, 10 ml), and $\mathrm{H}_{2} \mathrm{SO}_{4}$ (conc., 2 drops) was added. After refluxing (21 h) the reaction mixture was poured into $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{ml})$ and extracted with pentane $(5 \times 20 \mathrm{ml})$. The combined organic phases were washed with aqueous saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}(2 \times 20$ $\mathrm{ml})$, brine (20 ml) and finally dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the solvent gave a yellow oil ($30 \mathrm{mg}, 0.14 \mathrm{mmol}$). Separation by LC (using the same procedure as for the separation of aldols, see above) gave 6 mg of ($2 S, 3 S$)-3-hydroxy-2-methyl-3-phenylpropionate and 14 mg of ethyl ($2 S, 3 R$)-3-hydroxy-2-methyl-3phenylpropionate both with 100% purity by GC.

Spectroscopic data for ethyl ($2 S, 3 S$)-3-hydroxy-2-methyl-3phenylpropionate obtained from aldol product $\operatorname{syn}-2 S$: $[\alpha]_{D}^{25}$ $-23.4\left(c 0.36, \mathrm{CHCl}_{3}\right)$, lit. ${ }^{12}[a]_{\mathrm{D}}^{17}-22.0\left(c 0.87, \mathrm{CHCl}_{3}\right)$. MS (EI) m / z (relative intensity): $208\left(7 \%, \mathrm{M}^{+}\right), 191$ (5), 163 (3), 135 (5), 117 (7), 107 (47), 102 (100), 77 (74), 74 (81), 57 (23).

Spectroscopic data for ethyl ($2 S, 3 R$)-3-hydroxy-2-methyl-3phenylpropionate obtained from aldol product anti- $2 S$: $[\alpha]_{D}^{25}$ $+47.1\left(c \quad 1.12, \mathrm{CHCl}_{3}\right)$, lit. for ethyl $(2 R, 3 S)$-3-hydroxy-2-methyl-3-phenylpropionate ${ }^{12}[a]_{\mathrm{D}}^{17}-15.3$ (c 1.11, CHCl_{3}). MS (EI) m / z (relative intensity): 208 ($3 \%, \mathrm{M}^{+}$), 191 (37), 163 (3), 135 (37), 117 (7), 107 (46), 102 (100), 77 (38), 74 (42), 57 (20).

Acknowledgements

Financial support from the City of Sundsvall (Sundsvalls Kommun), Swedish Natural Science Research Council (NFR) and the Swedish Council for Forestry and Agricultural Research (SJFR) is gratefully acknowledged. We thank Pierre Ljungquist at STFI (Swedish Pulp and Paper Research Institute) for performing HRMS measurements.

References

1 For some examples, see: (a) S. G. Nelson, Tetrahedron: Asymmetry, 1998, 9, 357, and references cited therein; (b) A. S. Franklin and Y. Paterson, Contemp. Org. Synth., 1994, 317, and references cited therein.

2 For some examples, see: (a) L. N. Pridgen, A. F. Abdel-Magid, I. Lantos, S. Shilcrat and D. S. Eggleston, J. Org. Chem., 1993, 58, 5107; (b) J. L. Vicario, D. Badia, E. Dominguez and L. Carrillo, Tetrahedron Lett., 1998, 39, 9267; (c) M. P. Bonner and E. R Thornton, J. Am. Chem. Soc., 1991, 113, 1299; (d) D. A. Evans, J. S. Clark, R. Metternich, V. J. Novack and G. S. Sheppard, J. Am. Chem. Soc., 1990, 112, 866.
3 For some examples, see: (a) T. J. Donohoe, M. Helliwell, C. A. Stevenson and T. Ladduwahetty, Tetrahedron Lett., 1998, 39, 3071; (b) A. G. Myers and K. L. Widdowson, J. Am. Chem. Soc., 1990, 112, 9672; (c) T. Katsuki and M. Yamaguchi, Tetrahedron Lett., 1985, 26, 5807.
4 L. Guoqiang, M. Hjalmarsson, H.-E. Högberg, K. Jernstedt and T. Norin, Acta Chem. Scand., Ser. B, 1984, 38, 795.

5 E. Hedenström, PhD dissertation, Syntheses of chiral compounds related to the pine sawflies, University College of Sundsvall/ Härnösand and the Royal Institute of Technology, Stockholm, 1992, ISSN 1100-7974.

6 D. A. Evans, R. L. Dow, T. L. Shih, J. M. Takacs and R. Zahler, J. Am. Chem. Soc., 1990, 112, 5290

7 (a) H.-E. Högberg, Alkylation of amide enolates, in Houben-Weil Methods of organic chemistry, E21, eds. G. Helmchen, R. W. Hoffmann, J. Mulzer and E. Schaumann, Thieme, Stuttgart, 1995, pp. 791-915; (b) D. A. Evans and J. M. Takacs, Tetrahedron Lett., 1980, 21, 4233.
8 P. J. Murphy, G. Procter and A. Russell, Tetrahedron Lett., 1987, 28, 2037
9 D. A. Evans and L. R. McGee, Tetrahedron Lett., 1981, 21, 3975
10 A. G. Myers, B. H. Yang, H. Chen and J. L. Gleason, J. Am. Chem. Soc., 1994, 116, 9361.
11 S. G. Davis, A. J. Edwards, G. B. Evans and A. A. Mortlock, Tetrahedron, 1994, 50, 6621.
12 M. A. Hena, S. Terauchi, C.-S. Kim, M. Horiike and S. Kiyooka, Tetrahedron: Asymmetry, 1998, 9, 1883
13 N. A. Van Draanen, S. Arseniyadis, M. T. Crimmins and C. H. Heathcook, J. Org. Chem., 1991, 56, 2499.

